Kamis, 14 Desember 2017

Model Pembelajaran RME

Realistic Mathematics Education (RME) dikembangkan oleh Freud di Belanda dengan pola guided reinvention dalam mengkontruksi konsep-aturan melalui process of mathematization, yaitu matematika horizontal (tools, fakta, konsep, prinsip, algoritma, aturan uantuk digunakan dalam menyelesaikan
persoalan, proses dunia empirik) dan vertikal (reoorganisasi matematik melalui proses dalam dunia rasio, pengembangan matematika).
Prinsip RME adalah aktivitas (doing) konstruksivis, realitas (kebermaknaan proses-aplikasi), pemahaman (menemukan-informal daam konteks melalui refleksi, informal ke formal), inter-twinment (keterkaitan-intekoneksi antar konsep), interaksi (pembelajaran sebagai aktivitas sosial, sharing), dan bimbingan (dari guru dalam penemuan)
Pembelajaran matematika realistik atau Realistic Mathematics Education (RME) adalah sebuah pendekatan pembelajaran matematika yang dikembangkan Freudenthal di Belanda. Gravemeijer menjelaskan bahwa RME dapat digolongkan sebagai aktivitas yang meliputi aktivitas pemecahan masalah, mencari masalah dan mengorganisasi pokok persoalan. Matematika realistik yang dimaksudkan dalam hal ini adalah matematika sekolah yang dilaksanakan dengan menempatkan realitas dan pengalaman siswa sebagai titik awal pembelajaran. Masalah-masalah realistik digunakan sebagai sumber munculnya konsep-konsep matematika atau pengetahuan matematika formal.
Pendidikan matematika realistik  atau Realistic Mathematics Education (RME) mulai berkembang karena adanya keinginan meninjau kembali pendidikan matematika di Belanda yang dirasakan kurang bermakna  bagi pebelajar. Gerakan ini mula-mula diprakarsai oleh Wijdeveld  dan Goffre  (1968) melalui proyek Wiskobas. Selanjutnya bentuk RME yang ada sampai sekarang sebagian besar ditentukan oleh pandangan Freudenthal  (1977) tentang matematika. Menurut pandangannya matematika harus dikaitkan dengan kenyataan, dekat dengan pengalaman anak dan relevan terhadap masyarakat, dengan tujuan menjadi bagian dari nilai kemanusiaan.  Selain memandang matematika sebagai subyek yang ditransfer, Freudenthal menekankan ide matematika sebagai suatu kegiatan kemanusiaan. Pelajaran matematika harus memberikan kesempatan kepada pebelajar untuk “dibimbing” dan “menemukan kembali” matematika dengan melakukannya. Artinya dalam pendidikan matematika dengan sasaran utama matematika sebagai kegiatan dan bukan sistem tertutup. Jadi fokus pembelajaran matematika harus pada kegiatan bermatematika atau “matematisasi” (Freudental,1968). 
Kemudian Treffers (1978, 1987) secara eksplisit merumuskan ide tersebut dalam 2 tipe matematisasi dalam konteks pendidikan, yaitu matematisasi horisontal dan vertikal. Pada matematisasi horizontal siswa diberi perkakas matematika yang dapat menolongnya menyusun dan memecahkan masalah dalam kehidupan sehari-hari.Matematisasi vertikal di pihak lain merupakan proses reorganisasi dalam sistem matematis, misalnya menemukan hubungan langsung dari keterkaitan antar konsep-konsep dan strategi-strategi dan kemudian menerapkan temuan tersebut. Jadi matematisasi horisontal bertolak dari ranah nyata menuju ranah simbol, sedangkan matematisasi vertikal bergerak dalam ranah simbol. Kedua bentuk matematisasi ini sesungguhnya tidak berbeda maknanya dan sama nilainya (Freudenthal, 1991).
Matematika realistik yang dimaksudkan dalam hal ini adalah matematika sekolah yang dilaksanakan dengan menemaptkan realitas dan pengalaman siswa sebagai titik awal pembelajaran. Masalah-masalah realistik digunakan sebagai sumber munculnya konsep-konsep matematika atau pengetahuan matematika formal. Pembelajaran matematika realistik di kelas berorientasi pada karakteristik RME, sehingga siswa mempunyai kesempatan untuk menemukan kembali konsep-konsep matematika. Dan siswa diberi kesempatan untuk mengaplikasikan konsep-konsep matematika untuk memecahkan masalah sehari-hari. Karakteristik RME menggunakan: konteks “dunia nyata”, model-model, produksi dan kontruksi siswa, interaktif dan keterkaitan. (Trevers, 1991; Van Heuvel-Panhuizen, 1998). Di sini akan mencoba menjelaskan tentang karakteristik RME.
a. Menggunakan konteks “dunia nyata” yang tidak hanya sebagai sumber matematisasi tetapi juga sebagai tempat untuk mengaplikasikan kembali matematika. Pembelajaran matematika realistik diawali dengan masalah-masalah yang nyata, sehingga siswa dapat menggunakan pengalaman sebelumnya secara langsung. Proses pencarian (inti) dari proses yang sesuai dari situasi nyata yang dinyatakan oleh De Lange (1987) sebagai matematisasi konseptual. Dengan pembelajaran matematika realistik siswa dapat mengembangkan konsep yang lebih komplit. Kemudian siswa juga dapat mengaplikasikan konep-konsep matematika ke bidang baru dan dunia nyata. Oleh karena itu untuk membatasi konsep-konsep matematika dengan pengalaman sehari-hari perlu diperhatikan matematisasi pengalaman sehari-hari dan penerapan matematika dalam sehari-hari.
b. Menggunakan model-model (matematisasi) istilah model ini berkaitan dengan model situasi dan model matematika yang dikembangkan oleh siswa sendiri. Dan berperan sebagai jembatan bagi siswa dari situasi real ke situasi abstrak atau dari matematika informal ke matematika formal. Artinya siswa membuat model sendiri dalam menyelesaikan masalah. Model situasi merupakan model yang dekat dengan dunia nyata siswa. Generalisasi dan formalisasi model tersebut. Melalui penalaran matematika model-of akan bergeser menjadi model-for masalah yang sejenis. Pada akhirnya akan menjadi model matematika formal.
c. Menggunakan produksi dan konstruksi streefland (1991) menekankan bahwa dengan pembuatan “produksi bebas” siswa terdorong untuk melakukan refleksi pada bagian yang mereka anggap penting dalam proses belajar. Strategi-strategi formal siswa yang berupa prosedur pemecahan masalah konstekstual merupakan sumber inspirasi dalam pengembangan pembelajaran lebih lanjut yaitu untuk mengkonstruksi pengetahuan matematika formal.
d. Menggunakan interaktif. Interaktif antara siswa dengan guru merupakan hal yang mendasar dalam pembelajaran matematika realistik. Bentuk-bentuk interaktif antara siswa dengan guru biasanya berupa negoisasi, penjelasan, pembenaran, setuju, tidak setuju, pertanyaan, digunakan untuk mencapai bentuk formal dari bentuk-bentuk informal siswa.

e. Menggunakan keterkaitan dalam pembelajaran matematika realistik. Dalam pembelajaran ada keterkaitan dengan bidang yang lain, jadi kita harus memperhatikan juga bidang-bidang yang lainnya karena akan berpengaruh pada pemecahan masalah. Dalam mengaplikasikan matematika biasanya diperlukan pengetahuan yang kompleks, dan tidak hanya aritmatika, aljabar, atau geometri tetapi juga bidang lain.

Tidak ada komentar:

Posting Komentar